賦範空間 (Normed space)
一般常用的vector space X X X 為real number vector, matrix以及continuous function。
而field F F F 為real numbers R \mathbb{R} R or complex numbers C \mathbb{C} C .
Norm
A norm on a vector space X X X is a function: ∥ ⋅ ∥ : X → R + \begin{Vmatrix} \cdot \end{Vmatrix}: X \rightarrow \mathbb{R}^{+} ∥ ∥ ⋅ ∥ ∥ : X → R + , that satisfies
∀ x , y ∈ X \forall x, y \in X ∀ x , y ∈ X , and c ∈ F c \in \mathbb{F} c ∈ F
∥ x ∥ = 0 \begin{Vmatrix}x\end{Vmatrix} = 0 ∥ ∥ x ∥ ∥ = 0 ⇔ \Leftrightarrow ⇔ x = 0 x=0 x = 0 .
∥ c x ∥ = ∣ c ∣ ∥ x ∥ \begin{Vmatrix} cx \end{Vmatrix} = \begin{vmatrix} c \end{vmatrix} \begin{Vmatrix} x \end{Vmatrix} ∥ ∥ c x ∥ ∥ = ∣ ∣ c ∣ ∣ ∥ ∥ x ∥ ∥ .
∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ \begin{Vmatrix} x+y \end{Vmatrix} \leq \begin{Vmatrix} x \end{Vmatrix} + \begin{Vmatrix} y \end{Vmatrix} ∥ ∥ x + y ∥ ∥ ≤ ∥ ∥ x ∥ ∥ + ∥ ∥ y ∥ ∥ .
Normed space
A normed vector space ( X , ∥ ⋅ ∥ ) (X, \begin{Vmatrix} \cdot \end{Vmatrix}) ( X , ∥ ∥ ⋅ ∥ ∥ ) is a vector space X X X with a norm ∥ ⋅ ∥ \begin{Vmatrix} \cdot \end{Vmatrix} ∥ ∥ ⋅ ∥ ∥ , and it usually denoted the norm on space X X X by ∥ ⋅ ∥ X \begin{Vmatrix} \cdot \end{Vmatrix}_X ∥ ∥ ⋅ ∥ ∥ X .
A Banach space is a complete normed space.
Complete指的是metric space ( X , d ) (X,d) ( X , d ) 中的every Cauchy sequence in X X X is converent in X X X , d ( x , y ) = ∥ x − y ∥ d(x,y) = \begin{Vmatrix} x- y\end{Vmatrix} d ( x , y ) = ∥ ∥ x − y ∥ ∥ .