良序性(Well-ordering principle)

  • 若集合SS為全序集合,且ES\forall E \subset S, EϕE \neq \phi必定存在最小元素(least element),則稱(S,)(S, \leq)為良序集合。

  • E.g. 自然數N\mathbb{N}為良序集合;但是整數集合Z\mathbb{Z}不為良序集合,因為負整數的集合不含最小元素。

Archimedean property

  • 由實數的完備性可得到此性質:a,ba, b為任意的正實數,則不論bb有多大,必須可以找到aa的整數倍大於bb

  • Theorem: a,bR+a,b \in \mathbb{R}^+, nN\exists n \in \mathbb{N}, \ni na>bna> b.
    • Proof (by contradiction).
    • Suppose x,yRx,y \in \mathbb{R} with x>0 x > 0 such that nxy nx \leq y nN\forall n \in \mathbb{N}.
    • Let ϕS={nx nN}\phi \neq S =\lbrace nx \vert \ \forall n \in \mathbb{N} \rbrace, then SS is bounded above.
    • By least-upper-bound property  a=supSR+\exists \ a = \sup S \in \mathbb{R^{+}}.
    • nxa, nN\therefore nx \leq a,\ \forall n \in \mathbb{N} \Rightarrow nxax,nNnx \leq a-x, \forall n \in \mathbb{N}.
    • The above statement shows that axa-x is an upper bound of set SS, but ax<a a -x < a, and a=supSa=\sup S.
    • Thus the assumption nxynx \leq y nN\forall n \in \mathbb{N} is false. (QED).
  • 必定存在大於任意實數 r r 的整數。 Corollary: rR+\forall r \in \mathbb{R}^+  nN\exists \ n \in \mathbb{N} \ni n>rn > r.
  • Corollary: limn1n=0.\lim_{n \rightarrow \infty} \frac{1}{n} = 0.
  • Corollary: xR nZnx<n+1\forall x \in \mathbb{R}\ \exists n \in \mathbb{Z} \ni n \leq x < n+1 ,通常此整數記為[x] [x]
    • Proof: ϵ>0\because \forall \epsilon > 0 , n0N\exists n_0 \in \mathbb{N} \ni n0ϵ>1n_0 \epsilon >1 (Archimedean prop.) 1n0<ϵ nn0\therefore \frac{1}{n_0} < \epsilon \ \forall n \geq n_0.
  • Corollary: xR nZnx<n+1\forall x \in \mathbb{R}\ \exists n \in \mathbb{Z} \ni n \leq x < n+1 ,通常此整數記為[x] [x]
    • Proof:
    • xZ x \in \mathbb{Z} ,則得n=x n=x
    • x>0 x > 0 ,依Archimedean property,集合S={mNm>x} S =\{ m \in \mathbb{N} | m > x \} 不是空集合,因為SN S \subset \mathbb{N}
    • 依正整數的良序性,S S 存在最小元素k k ,因此k>x k > x k1x k-1 \leq x
    • 同理可證x<0 x < 0 (QED)。
    • Theorem: 任意兩個實數間必定在有理數
    • If x,yR and x<yx,y \in \mathbb{R} \text{ and }x < y, then  pQx<p<y\exists \ p \in \mathbb{Q} \ni x < p < y.
    • Proof: 假設 x>0x > 0 and y>0y > 0.
    • Claim: If yx>1 y -x > 1 then nNx<n<y \exists n \in \mathbb{N} \ni x < n < y.
      • Because S={pNp>x}S = \lbrace p \in \mathbb{N} \vert p > x\rbrace, by Archimedean property we get SϕS \neq \phi .
      • By well-ordering principle, SS has la least element nn such that x<nx+1<yx < n \leq x+1< y.

可數與不可數集合 (Countable and uncountable set)

  • 集合SS是否可數,可分為以下三類。

  • 可數有限個元素(Countable finite)

  • 可數無限個元素(Counable infinite):exists 1-to-1 function between set SS and natural number N\mathbb{N}

  • 不可數(Uncountable): 如果SS不為countable時,即為uncountable。

  • Theorem:可數集合SS中的任意子集合AA仍為可數,因為很容易得出AAN\mathbb{N}存在1-to-1 function。
  • Theorem: Let En, nN{E_n},\ n \in \mathbb{N} are a sequence of countable sets, S=nNEn S = \cup_{n \in \mathbb{N}} E_n is countable set.

results matching ""

    No results matching ""