Hausdorff space
Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology.
- 定義:separated by neightborhood
- Points in a topological space can be separated by neightborhoods if there exists a neighborhood of and a neightborhood of such that are disjoint set. ()
- 拓樸空間 中的任意兩點 的對應鄰域為 ,若存在不交的兩個鄰域時,則稱 可由鄰域分離。
- 此定義中不要求為開鄰域或是閉鄰域
- E.g. , let .
- 定義:Hausdorff space
- is a Hausdorff space if all distinct points in are pairwise neighborhood-spearable.
對於topologically space 以下敘述等價:
- is a Hausdorff space.
- Limits of nets, filfters in are unique.
- 為積空間 的閉集合。
- Any singleton set is equal to the intersection of all closed neighborhoods of .
幾乎所有在分析中的空間都是Hausdorff space. (esp. the real numbers under the standard metric topology on real numbers).
所有的metric spaces都是Hausdorff space.
Pesudometric spaces不是Hausdorff space.
- , the pseudometric satisfies:
- .
- .
pseudometric 與 metric的差異只有在允許相異的元素距離為0,即 .
E.g. Functional space , .
- , the pseudometric satisfies: