絕對值與三角不等式 (Absolute value and the triangle inequality)

絕對值(Absolute value)

  • xRx \in \mathbb{R}, the absolute value of xx is x\begin{vmatrix} x \end{vmatrix}.

    • x={x,x0,x,x0. \begin{vmatrix} x \end{vmatrix} = \left \lbrace \begin{array}{ll} x, & x \geq 0, \\ -x, & x \leq 0. \end{array} \right.
  • Theorem: a0a \geq 0, then xa  axa\begin{vmatrix} x \end{vmatrix} \leq a \ \Leftrightarrow \ -a \leq x \leq a.

三角不等式 (Traingle inequality)

  • x,yR x+yx+y\forall x, y \in \mathbb{R} \Rightarrow \ \begin{vmatrix} x+y \end{vmatrix} \leq \begin{vmatrix} x \end{vmatrix} + \begin{vmatrix} y \end{vmatrix}.
    • We have xxx -\begin{vmatrix} x \end{vmatrix} \leq x \leq \begin{vmatrix} x \end{vmatrix} and yyy- \begin{vmatrix} y \end{vmatrix} \leq y \leq \begin{vmatrix} y \end{vmatrix}.
    • (x+y)x+yx+y\therefore - (| x| + |y| ) \leq x+y \leq |x| + |y|. [1]
    • x+yx+y \because | x + y| \leq x + y. [2]
    • By [1][2], x+yx+y | x+y| \leq |x| + |y| (QED).
  • Corollary: abac+cb | a- b | \leq | a-c| + |c -b| .

  • Corollary: x1+x2++xnx1+x2++xn | x_1 + x_2 + \cdots + x_n | \leq |x_1| + |x_2| + \cdots + |x_n|.

Cauchy-Schwarz不等式

  • {akR,k=1,2,,N},{bkR,k=1,2,,N}\lbrace a_k \in \mathbb{R}, k=1,2,\cdots,N \rbrace, \lbrace b_k \in \mathbb{R}, k=1,2,\cdots, N \rbrace then
  • (k=1Nakbk)2(k=1nak2)(k=1Nbk2) \left( \sum_{k=1}^N a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^N b_k^2 \right)
  • matrix form: (ab)2a2b2 (\mathbf{a} \cdot \mathbf{b})^2 \leq \begin{Vmatrix} a \end{Vmatrix}^2 \begin{Vmatrix} b \end{Vmatrix}^2 .

Lagrange identity

  • {akR,k=1,2,,N},{bkR,k=1,2,,N}\lbrace a_k \in \mathbb{R}, k=1,2,\cdots,N \rbrace, \lbrace b_k \in \mathbb{R}, k=1,2,\cdots, N \rbrace then
  • (k=1Nakbk)2=(k=1Nak2)(k=1Nbk2)1k<jN(akbjajbk)2\left( \sum_{k=1}^N a_k b_k \right)^2 = \left( \sum_{k=1}^N a_k^2 \right) \left( \sum_{k=1}^N b_k^2 \right) - \sum_{1 \leq k < j \leq N} (a_k b_j - a_j b_k)^2.

  • 可用Lagrange等式推出Cauchy-Schwarz inequality.

Minkowski's inequality

  • {akR,k=1,2,,N},{bkR,k=1,2,,N}\lbrace a_k \in \mathbb{R}, k=1,2,\cdots,N \rbrace, \lbrace b_k \in \mathbb{R}, k=1,2,\cdots, N \rbrace then

  • (k=1N(ak+bk)2)1/2(k=1Nak2)1/2+(k=1Nbk2)1/2 \left( \sum_{k=1}^N (a_k + b_k)^2 \right)^{1/2} \leq \left( \sum_{k=1}^N a_k^2 \right)^{1/2} + \left( \sum_{k=1}^N b_k^2 \right)^{1/2}.

  • matrix form: a+ba+b \begin{Vmatrix} \mathbf{a} + \mathbf{b} \end{Vmatrix} \leq \begin{Vmatrix} \mathbf{a} \end{Vmatrix} + \begin{Vmatrix} \mathbf{b} \end{Vmatrix}.

results matching ""

    No results matching ""