跳躍過程 (Jump process)

Exponential distribution

  • Xexp(λ)X \sim \exp(\lambda), λ>0\lambda > 0 .

  • xx is a exponential random variable with densify function f(t)={λeλtt0,0t<0. f(t) = \lbrace \begin{array}{ll} \lambda e^{-\lambda t} & t \geq 0, \\ 0 & t < 0. \end{array}

  • λR+\lambda \in \mathbb{R}^{+} is constant (rate or density, number of events happend per time unit).

  • E(X)=1λE(X) = \frac{1}{\lambda}.

    E(X)=0xf(x)dx=λ0xeλxdx((integral by part)=xeλxx=0+0eλxdx=1λ. \begin{array}{rcl} E(X) & = & \int_0^\infty x f(x) dx \\ & = & \lambda \int_0^\infty x e^{-\lambda x} dx \\ (\text{(integral by part} ) & = & -x e^{- \lambda x} \vert_{x=0}^{\infty} + \int_0^\infty e^{-\lambda x} dx \\ & = & \frac{1}{\lambda}. \end{array}

  • F(X)=P(tx)=0xλeλtdt=1eλx, x0F(X) = P(t \leq x) = \int_0^x \lambda e^{- \lambda t} dt = 1 - e^{- \lambda x},\ x \geq 0.

  • P(x>t)=eλt\therefore P(x > t) = e^{- \lambda t} .

Memoryless property

  • λ\lambda為單位時間內,事件平均發生的次數(頻率)(e.g. 每小時公車到站的次數、每分鐘經過路口的車輛數等)。
  • 所以1λ\frac{1}{\lambda}為事件發生一次所需等待的時間(週期),所以平均等待時間E(X)=1λE(X) = \frac{1}{\lambda}.

results matching ""

    No results matching ""