Ito integral

確定性函數的鏈鎖律(Chain rule for deterministic function)

  • ff is a deterministic function, then
  • F(x)=stf(x)dx=stdF(x)=F(t)F(s)F(x) = \int_s^t f(x)dx = \int_s^t dF(x) = F(t) - F(s).
  • Assuming ff, gg are differentiable, by the chain rule
  • f(g(x))=f(g(x))g(x)f(g(x))^{'} = f^{'}(g(x))\cdot g^{'}(x) or df(g)=fdgdf(g) = f^{'}dg.

    • E.g. f(x)=x3f(x) = x^3, g(x)=e2xg(x) = e^{2x}.
    • df(g)=(e2x)3=(e6x)=6e6x df(g) = (e^{2x})^3 = (e^{6x})^{'} = 6e^{6x}.
  • f(g(t))f(g(0))=0tf(g(s))g(s)ds=0tf(g(r))dg(r)f(g(t)) - f(g(0)) = \int_0^t f^{'}(g(s))g^{'}(s)ds = \int_0^t f^{'}(g(r))dg(r).

Weiner integral

  • {X(t), t0}\{ X(t), \ t \geq 0 \} is Brownian process, X(t)N(0,σ2t)X(t) \sim N(0, \sigma^2 t).
  • ff is a deterministic function, continuous and differentiable on [a,b][a,b].
  • Let Δ:a=t0<t1<t2<<tn=b\Delta: a=t_0 < t_1 < t_2 < \cdots < t_n = b, and max(tktk1)0\max(t_k - t_{k-1}) \rightarrow 0.
  • X(tk)X(tk1)N(0,σ2(tktk1)\therefore X(t_k) - X(t_{k-1}) \sim N(0, \sigma^2 (t_k - t_{k-1}).
  • 可得abf(t)dX(t)=f(b)X(b)f(a)X(a)abX(t)df(t)\int_a^b f(t) dX(t) = f(b)X(b) - f(a)X(a) - \int_a^b X(t)df(t).

k=1nf(tk1)(X(tk)X(tk1)=f(t0)(X(t1)X(t0))+f(t1)(X(t2)X(t1))++f(tn1)(X(tn)X(tn1))=f(tn)X(tn)f(t0)X(t0)X(t1)(f(t1)f(t0))X(tn)(f(tn)f(tn1))=f(b)X(b)f(a)X(a)k=1nX(tk)(f(tk)f(tk1)). \begin{array}{rcl} \sum_{k=1}^n f(t_{k-1})(X(t_k) - X(t_{k-1}) & = & f(t_0)(X(t_1) - X(t_0)) + f(t_1)(X(t_2) - X(t_1))+ \cdots + f(t_{n-1})(X(t_n) - X(t_{n-1})) \\ & = & f(t_n)X(t_n) - f(t_0)X(t_0) - X(t_1)(f(t_1) - f(t_0)) - \cdots X(t_n)(f(t_n) - f(t_{n-1})) \\ & = & f(b)X(b) - f(a)X(a) - \sum_{k=1}^n X(t_k)(f(t_k)- f(t_{k-1})). \end{array}

  • limnk=1nX(tk)(f(tk)f(tk1))=abX(t)df(t) \because \lim_{n \rightarrow \infty} \sum_{k=1}^n X(t_k)(f(t_k) - f(t_{k-1})) = \int_a^b X(t)df(t) and max(tktk1)0\max(t_k - t_{k-1}) \rightarrow 0.
  • abf(t)dX(t)=f(b)X(b)f(a)X(a)abX(t)df(t)\therefore \int_a^b f(t)dX(t) = f(b) X(b) - f(a) X(a) - \int_a^b X(t) df(t).

Weiner integral example

  • f(t)=1f(t) = 1

    • abf(t)dX(t)=abdX(t)=X(b)X(a)N(0,σ2(ba))\int_a^b f(t) dX(t) = \int_a^b dX(t) = X(b) - X(a) \sim N(0, \sigma^2(b-a)).
  • f(t)=tf(t) = t, a=0a=0, b=1b=1.

    • 01tdX(t)=X(1)01X(t)dt\int_0^1 tdX(t) = X(1) - \int_0^1 X(t)dt.

Weiner integral properties

  • abX(t)dt=lim(tktk1)0k=1nX(tk)(tktk1)\int_a^b X(t)dt = \lim_{(t_k - t_{k-1}) \rightarrow 0} \sum_{k=1}^n X(t_k)(t_k - t_{k-1}) is normal distribution.
  • abf(t)dX(t)=f(b)X(b)f(a)X(a)abX(t)df(t)\int_a^b f(t) dX(t) = f(b)X(b) - f(a)X(a) - \int_a^b X(t)df(t) is also normal distribution.

  • E(abf(t)dX(t))=0E\left( \int_a^b f(t) dX(t) \right) = 0 .

    • abf(t)dX(t)=k=1nf(tk1)(X(tk)X(tk1))\int_a^b f(t)dX(t) = \sum_{k=1}^n f(t_{k-1})(X(t_k) - X(t_{k-1})) and E(X(tk)X(tk1))=0E(X(t_k) - X(t_{k-1})) =0 .
    • E(abf(t)dX(t))=0\therefore E \left( \int_a^b f(t)dX(t) \right) = 0.
  • If ff, gg are differentiable and continuous on [a,b][a,b].

  • E(abf(t)dX(t)abg(t)dX(t)=σ2abf(t)g(t)dt)E\left( \int_a^b f(t)dX(t) \int_a^b g(t)dX(t) = \sigma^2 \int_a^b f(t)g(t)dt \right)
  • If a<ba < b and g=fg=f then Var(abf(t)dX(t))=σ2ab(f(t))2dtVar\left( \int_a^b f(t) dX(t) \right) = \sigma^2 \int_a^b (f(t))^2 dt.

Taylor級數 (Taylor series)

  • f(x)=f(h)+f(1)(xh)+f(2)(h)2!(xh)2+=k=0nf(k)(h)k!(xh)k.\begin{array}{rcl} f(x) & = & f(h) + f^{(1)}(x-h)+ \frac{f^{(2)}(h)}{2!}(x-h)^2+\cdots \\ & = & \sum_{k=0}^n \frac{f^{(k)}(h)}{k!}(x-h)^k. \end{array}

    • E.g. f(x)=sinxf(x) = \sin x, f(1)(x)=cosxf^{(1)}(x) = \cos x, f(2)(x)=sinxf^{(2)}(x) = -\sin x
    • Let h=0h=0, sinx=0+xx33!+x55!x77!+\sin x = 0 + x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots.
    • 使用不同的hh時,f(x)f(x)有不同的多項式逼近式。
  • f(x+h)=f(x)+f(1)(x)h+f(2)(x)2!h2+f(3)(x)3!h3+f(x+h) = f(x) + f^{(1)}(x)h + \frac{f^{(2)}(x)}{2!}h^2 + \frac{f^{(3)}(x)}{3!}h^3+\cdots

  • f(x+h)f(x)=f(1)(x)h+f(2)(x)2!h2+f(3)(x)3!h3+\therefore f(x+h) - f(x) = f^{(1)}(x)h + \frac{f^{(2)}(x)}{2!}h^2 + \frac{f^{(3)}(x)}{3!}h^3+\cdots.
  • Let x=g(t)x = g(t), h=dg(t)=g(t+dt)g(t) h= dg(t) = g(t+dt) - g(t), hhgg的微小變化量。
  • df(g)=f(g(t)+dg(t))f(g(t))df(g) = f(g(t)+dg(t)) - f(g(t)) and df(g)=fdgdf(g) = f^{'}dg.
  • df(g)=f(g(t)+dg(t))f(g(t))=f(1)(g(t))dg(t)+f(2)(g(t))2!(dg(t))2+ \Rightarrow \begin{array}{rcl} df(g) & = &f(g(t)+dg(t)) - f(g(t)) \\ & = &f^{(1)}(g(t))dg(t) + \frac{f^{(2)}(g(t))}{2!}\left( dg(t) \right)^2 + \cdots \end{array}
  • 比較上式後,可發現在確定性函數g(t)g(t)中,當dtdt很小,即時間變化量很小時, g(t)g(t)[t,t+dt][t,t+dt]的變量化dg(t)dg(t)也很小,所以(dg(t))2\left( dg(t) \right)^2以上的高次方均可省略不計。
  • 但是若g(t)=B(t)g(t)=B(t)為Brownian process時,(dg(t))2\left( dg(t) \right)^2不可省略,因為(dg(t))2=(dB(t))2=dt\left( dg(t) \right)^2 = (dB(t))^2 = dt.

Ito lemma 1

  • Let g(t)=B(t)N(0,t)g(t) = B(t) \sim N(0, t) is standard Brownian process.
  • (dg(t))2=(dB(t))2(dg(t))^2 = (dB(t))^2 and limnE(k=1n(ΔBk)2t)2)=0 \lim_{n \rightarrow \infty} E \left(\sum_{k=1}^n (\Delta B_k)^2 - t)^2 \right) = 0.
  • limnk=1n(ΔBk)2=0t(dB(s))2=t=0tds \lim_{n \rightarrow \infty} \sum_{k=1}^n (\Delta B_k)^2 = \int_0^t (dB(s))^2 = t = \int_0^t ds.
  • Derivative form: (dB(t))2=(B(t+dt)B(t))2=dt(dB(t))^2 = (B(t+dt) - B(t))^2 = dt. a.s.

    • B(t) \because B(t) continuous but not differentiable on [a,b][a,b].
    • dB(t)B(t)dt\therefore dB(t) \neq B^{'}(t)dt.
    • E(dB(t))=E(B(t+dt)B(t))=E(B(t+dt))E(B(t))=0E(dB(t)) = E(B(t+dt) - B(t)) = E(B(t+dt)) - E(B(t)) = 0.
    • E((dB(t))2)=Var(dB(t))+E2(dB(t))=Var(dB(t))=dtE((dB(t))^2) = Var(dB(t)) + E^2(dB(t)) = Var(dB(t)) = dt.
    • B(t+dt)B(t)N(0,dt)\Rightarrow \therefore B(t+dt) - B(t) \sim N(0, dt).
    • Var((dB(t))2)=0Var((dB(t))^2) = 0.

      Var((dB(t))2)=E((dB(t))4)E2((dB(t))2)=3(Var(dB(t))2(dt)2=3(dt)2(dt)2=2(dt)2( dt0)0. \begin{array}{rcl} Var((dB(t))^2) & = & E((dB(t))^4) - E^2((dB(t))^2) \\ & = & 3(Var(dB(t))^2 - (dt)^2 \\ & = & 3(dt)^2 - (dt)^2 \\ & = & 2(dt)^2 \\ (\because \ dt \rightarrow 0) & \approx & 0. \end{array}

    • E((dB(t))2)=dt\because E((dB(t))^2)=dt and Var((dB(t))2)=0Var((dB(t))^2) = 0.

    • (dB(t))2=dt\Rightarrow (dB(t))^2 = dt a.s.
  • 一般若XX為隨機變數,則連續函數g(X)g(X)也是隨機變數。

  • 然而隨機變數dB(t)dB(t)的函數(dB(t))2(dB(t))^2的變異數為2(dt)22(dt)^2,在很短的時間變化量dtdt下,變異數趨近於0,因此(dB(t))2(dB(t))^2可視為與常數dtdt之值相等。

Ito lemma 2

results matching ""

    No results matching ""