Ito integral
確定性函數的鏈鎖律(Chain rule for deterministic function)
Weiner integral
- {X(t), t≥0} is Brownian process, X(t)∼N(0,σ2t).
- f is a deterministic function, continuous and differentiable on [a,b].
- Let Δ:a=t0<t1<t2<⋯<tn=b, and max(tk−tk−1)→0.
- ∴X(tk)−X(tk−1)∼N(0,σ2(tk−tk−1).
- 可得∫abf(t)dX(t)=f(b)X(b)−f(a)X(a)−∫abX(t)df(t).
k=1∑nf(tk−1)(X(tk)−X(tk−1)===f(t0)(X(t1)−X(t0))+f(t1)(X(t2)−X(t1))+⋯+f(tn−1)(X(tn)−X(tn−1))f(tn)X(tn)−f(t0)X(t0)−X(t1)(f(t1)−f(t0))−⋯X(tn)(f(tn)−f(tn−1))f(b)X(b)−f(a)X(a)−k=1∑nX(tk)(f(tk)−f(tk−1)).
- ∵limn→∞∑k=1nX(tk)(f(tk)−f(tk−1))=∫abX(t)df(t) and max(tk−tk−1)→0.
- ∴∫abf(t)dX(t)=f(b)X(b)−f(a)X(a)−∫abX(t)df(t).
Weiner integral example
Weiner integral properties
- ∫abX(t)dt=lim(tk−tk−1)→0∑k=1nX(tk)(tk−tk−1) is normal distribution.
∫abf(t)dX(t)=f(b)X(b)−f(a)X(a)−∫abX(t)df(t) is also normal distribution.
E(∫abf(t)dX(t))=0.
- ∫abf(t)dX(t)=∑k=1nf(tk−1)(X(tk)−X(tk−1)) and E(X(tk)−X(tk−1))=0.
- ∴E(∫abf(t)dX(t))=0.
If f, g are differentiable and continuous on [a,b].
- E(∫abf(t)dX(t)∫abg(t)dX(t)=σ2∫abf(t)g(t)dt)
- If a<b and g=f then Var(∫abf(t)dX(t))=σ2∫ab(f(t))2dt.
Taylor級數 (Taylor series)
f(x)==f(h)+f(1)(x−h)+2!f(2)(h)(x−h)2+⋯∑k=0nk!f(k)(h)(x−h)k.
- E.g. f(x)=sinx, f(1)(x)=cosx, f(2)(x)=−sinx
- Let h=0, sinx=0+x−3!x3+5!x5−7!x7+⋯.
- 使用不同的h時,f(x)有不同的多項式逼近式。
f(x+h)=f(x)+f(1)(x)h+2!f(2)(x)h2+3!f(3)(x)h3+⋯
- ∴f(x+h)−f(x)=f(1)(x)h+2!f(2)(x)h2+3!f(3)(x)h3+⋯.
- Let x=g(t), h=dg(t)=g(t+dt)−g(t), h為g的微小變化量。
- df(g)=f(g(t)+dg(t))−f(g(t)) and df(g)=f′dg.
- ⇒df(g)==f(g(t)+dg(t))−f(g(t))f(1)(g(t))dg(t)+2!f(2)(g(t))(dg(t))2+⋯
- 比較上式後,可發現在確定性函數g(t)中,當dt很小,即時間變化量很小時, g(t)在[t,t+dt]的變量化dg(t)也很小,所以(dg(t))2以上的高次方均可省略不計。
- 但是若g(t)=B(t)為Brownian process時,(dg(t))2不可省略,因為(dg(t))2=(dB(t))2=dt.
Ito lemma 1
Ito lemma 2