測度變換(Change of measure)

  • 測度(measure)為度量(metric)的推廣。
  • 比如說在一維空間的測度為距離,二維空間的測度為面積,三維空間的測度為體積等。
  • 一般生活中常使用單位換算,可視為測度變換的特例。
    • E.g. 公分 \Leftrightarrow 公尺,美金\Leftrightarrow日元,攝氏\Leftrightarrow華氏。
  • 因為物質的本質不變,所以即使用不同單位量測,本質仍然不變,只有量測值會變動。
  • 上述例子均為實數的變換,這邊要討論的測度變換為random variable的變換。

What is a change of the underlying measure?

  • The main idea of the change of measure technique consists of introducing a new probability measure via a so-called density function which is in general not a probability.

絕對連續(測度) (absolutely continuous (measure))

  • PP, QQ are two probability measures on the same sigma-field FF
  • If there exists a non-negative function g1g_1 s.t.
    • Q(A)=Ag1(ω)dP(ω),AFQ(A) = \int_A g_1(\omega)dP(\omega), \forall A \in F.
    • We say that g1g_1 is the density of QQ w.r.t. PP.
    • QQ is absolutely continous w.r.t. PP (記為 Q<<PQ << P).
    • 絕對連續即機率測度PP可經由一正值函數g1g_1轉換成機率測度QQ
    • g1g_1必須為正值是因為機率測度值必須大於等於0。

等價測度 (Equivalent probability measure)

  • If PP is absolutely continuous w.r.t. QQ (P<<QP << Q) and
  • If QQ is absolutely continuous w.r.t. PP (Q<<PQ << P).
  • Then PP and QQ are equivalent probability measures.
    • i.e. P(A)>0Q(A)>0P(A) > 0 \Leftrightarrow Q(A) > 0 .
    • 即原本QQ測度為0的事件集合,使用PP測度仍然為00,而QQ測度不為0的事件集合,使用PP測度不一定為0。

Example: Normal distribution

  • Considering XN(μ,σ2)X \sim N(\mu, \sigma^2)
    • The pdf fμ,σ2(x)=12πσe(xμ)22σ2f_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{- \frac{(x-\mu)^2}{2\sigma^2}}.
    • The cdf Fμ,σ2(x)=xfμ,σ2(y)dyF_{\mu, \sigma^2}(x) = \int_{-\infty}^{x} f_{\mu, \sigma^2}(y) dy.
  • Consider two pairs parameters (μ1,σ12)(\mu_1, \sigma_1^2), (μ2,σ22)(\mu_2,\sigma_2^2).
    • Define g1=fμ1,σ12(x)fμ2,σ22(x)>0g_1=\frac{f_{\mu_1, \sigma_1^2}(x)}{f_{\mu_2, \sigma_2^2}(x)} > 0, g2=fμ2,σ22(x)fμ1,σ12(x)>0g_2=\frac{f_{\mu_2, \sigma_2^2}(x)}{f_{\mu_1, \sigma_1^2}(x)} > 0.
    • Then F1(x)=xg1(y)fμ2,σ22(y)dyF_1(x) = \int_{-\infty}^{x}g_1(y)f_{\mu_2, \sigma_2^2}(y)dy.
    • F2(x)=xg2(y)fμ1,σ12(y)dyF_2(x) = \int_{-\infty}^{x}g_2(y)f_{\mu_1, \sigma_1^2}(y)dy.
  • 可知 g1g_1, g2g_2不是pdf,但是為正值的函數。

Example: Exponential function

  • Pexp(μ)P \sim exp(\mu)Qexp(λ)Q \sim exp(\lambda).
  • \therefore PPQQ are equivalent measures。
  • eQ(X)=ΩXdQ=Ωxλeλx=Ωλeλxμeμxeμxdx=Ep(ZX)\begin{array}{rcl} e_Q(X) & = & \int_{\Omega}X dQ \\ & = & \int_{\Omega}x\lambda e^{-\lambda x} \\ & = & \int_{\Omega} \frac{\lambda e^{-\lambda x}}{\mu e^{- \mu x}}e^{-\mu x} dx \\ & = & E_p(ZX) \end{array}
  • Z=λeλxμeμxZ = \frac{\lambda e^{-\lambda x}}{\mu e^{- \mu x}} 稱為Raydon-Nikodym derivative.

Randon-Nikodym derivative

  • If PP and QQ are equivalent measures, and XtX_t is an FtF_t-adapted process, then
    • EQ(Xt)=Ep(dQdPXt)E_Q(X_t) = E_p \left( \frac{dQ}{dP}X_t \right).
    • EQ(XtFt)=Ls1Ep(LtXtFs)E_Q(X_t \vert F_t) = L_s^{-1} E_p \left( L_t X_t \vert F_s \right).
      • Ls=Ep(dQdPXtFs)L_s = E_p \left( \frac{dQ}{dP}X_t \vert F_s \right).
  • LtL_t is the Radon-Nikodym derivative of QQ with respect to PP.

results matching ""

    No results matching ""