測度變換(Change of measure)
- 測度(measure)為度量(metric)的推廣。
- 比如說在一維空間的測度為距離,二維空間的測度為面積,三維空間的測度為體積等。
- 一般生活中常使用單位換算,可視為測度變換的特例。
- E.g. 公分 ⇔ 公尺,美金⇔日元,攝氏⇔華氏。
- 因為物質的本質不變,所以即使用不同單位量測,本質仍然不變,只有量測值會變動。
- 上述例子均為實數的變換,這邊要討論的測度變換為random variable的變換。
What is a change of the underlying measure?
- The main idea of the change of measure technique consists of introducing a new probability measure via a so-called density function which is in general not a probability.
絕對連續(測度) (absolutely continuous (measure))
- P, Q are two probability measures on the same sigma-field F。
- If there exists a non-negative function g1 s.t.
- Q(A)=∫Ag1(ω)dP(ω),∀A∈F.
- We say that g1 is the density of Q w.r.t. P.
- Q is absolutely continous w.r.t. P (記為 Q<<P).
- 絕對連續即機率測度P可經由一正值函數g1轉換成機率測度Q。
- g1必須為正值是因為機率測度值必須大於等於0。
等價測度 (Equivalent probability measure)
- If P is absolutely continuous w.r.t. Q (P<<Q) and
- If Q is absolutely continuous w.r.t. P (Q<<P).
- Then P and Q are equivalent probability measures.
- i.e. P(A)>0⇔Q(A)>0.
- 即原本Q測度為0的事件集合,使用P測度仍然為0,而Q測度不為0的事件集合,使用P測度不一定為0。
Example: Normal distribution
- Considering X∼N(μ,σ2)
- The pdf fμ,σ2(x)=√2πσ1e−2σ2(x−μ)2.
- The cdf Fμ,σ2(x)=∫−∞xfμ,σ2(y)dy.
- Consider two pairs parameters (μ1,σ12), (μ2,σ22).
- Define g1=fμ2,σ22(x)fμ1,σ12(x)>0, g2=fμ1,σ12(x)fμ2,σ22(x)>0.
- Then F1(x)=∫−∞xg1(y)fμ2,σ22(y)dy.
- F2(x)=∫−∞xg2(y)fμ1,σ12(y)dy.
- 可知 g1, g2不是pdf,但是為正值的函數。
Example: Exponential function
- P∼exp(μ),Q∼exp(λ).
- ∴ P,Q are equivalent measures。
- eQ(X)====∫ΩXdQ∫Ωxλe−λx∫Ωμe−μxλe−λxe−μxdxEp(ZX)
- Z=μe−μxλe−λx 稱為Raydon-Nikodym derivative.
Randon-Nikodym derivative
- If P and Q are equivalent measures, and Xt is an Ft-adapted process, then
- EQ(Xt)=Ep(dPdQXt).
- EQ(Xt∣Ft)=Ls−1Ep(LtXt∣Fs).
- Ls=Ep(dPdQXt∣Fs).
- Lt is the Radon-Nikodym derivative of Q with respect to P.