Brownian motion (布朗運動)

定義: Brownian motion

  • A stochastic process {X(t),t0}\{X(t), t \geq 0\} is said to be a Brownian motion process if
    • X(0)=0 X(0) = 0 .
    • {X(t),t0} \{X(t), t \geq 0\} has independent increments X(t)X(s)N(0,σ2(ts))X(t)-X(s) \sim N(0, \sigma^2(t-s)) .
    • t>0,X(t)N(0,σ2t) \forall t >0, X(t) \sim N(0, \sigma^2 t) .
    • t \forall t, X(t)X(t) is continuous.
  • 由此可知,布朗運動每一點之間獨立。

  • σ=1\sigma = 1,稱為標準布朗運動 (Standard Brownian motion)。

  • 任何布朗運動,都可以藉由標準化B(t)=X(t)tB(t) = \frac{X(t)}{t} 轉換為標準布朗運動。

定義 (in Shreve, Stochastic Calculus for finance)

  • (Ω,F,P)(\Omega, F, P) is probability space.
  • For each ωΩ\omega \in \Omega, suppose there is a continuous function W(t), t0W(t),\ t \geq 0, which satisfies W(0)=0W(0) = 0 and depends on ω\omega.
  • Then W(t), t0W(t),\ t \geq 0 is Brownian process if 0=t0<t1<<tn\forall 0 = t_0 < t_1 < \cdots < t_n, the increment W(t1)W(t0)W(t_1)-W(t_0), W(t2)W(t1)W(t_2)-W(t_1), \cdots W(tn)W(tn1W(t_n) - W(t_{n-1} are mutual independent.
  • Each of the increment is i.i.d. random variable of N(0,ti+1ti)N(0, t_{i+1} - t_{i})
    • E(W(ti+1)W(ti))=0E(W(t_{i+1}) - W(t_i)) = 0.
    • Var(W(ti+1)Wti)=ti+1tiVar(W(t_{i+1}) - W_{t_i}) = t_{i+1} - t_i.
    • W(t)=W(t)W(0)N(0,t)\therefore W(t) = W(t) - W(0) \sim N(0, t).

Filtration

  • (Ω,F,P)(\Omega, F, P) is probability space, and Brownian process W(t), t0W(t),\ t \geq 0.
  • A filtration for Brownian process is a collection of σ\sigma-field F(t), t0F(t),\ t\geq 0 satisfies:
    • Information accumulates (增大資訊集合), 0st0 \leq s \leq t, F(s)F(t)F(s) \subseteq F(t).
      • There is at least much information available at the later time F(t)F(t) as there is at the earlier time F(s)F(s).
      • 資訊為擴增的集合。
    • Adaptivity (適應性), t0\forall t \geq 0, {wW(t,ω)}F(t)\lbrace w \vert W(t, \omega) \rbrace \in F(t) or called W(t)W(t) is F(t)F(t)-measurable.
      • The information available at time tt is sufficient to evaluate the Brownian process W(t)W(t) at this time.
      • 現在的事件必須可以用到目前為止的資訊集合評估。
    • Independence of future increment, 0st0 \leq s \leq t, P(W(t)W(s)F(s))=P(W(t)W(s))P(W(t) - W(s) \vert F(s)) = P(W(t)-W(s)).
      • Any increment of the Brownian process after time tt is independent of the information available at time tt.
      • 未來的事件與現在的資訊集合獨立,即無法預測Brownian過程未來之值。
    • Properties (1) and (2) guarantee that the information available at teach time tt is at least as much as one would learn from observing the Brownian motion up to time tt.

  • There are two possibilities for the filtration F(t)F(t) for Brownian process.
    • F(t)F(t) contains only the information obtained by observing the Brownian process itself up time tt.
    • If the information F(t)F(t) includes observations of processes other than Brown process W(t)W(t), this additional information is not allow to give clues about the future increments of WW because of the property (3).

Implementation

import numpy as np
import matplotlib.pyplot as plt

def brownian_motion(n_path, n_step=1000, mean=0, variance=1):
   points = np.random.randn(n_path, n_step)*np.sqrt(variance) + mean
   return(np.cumsum(points, axis=1))
n_path, n_step, mean, variance = 1000, 1000, 0 , 4
paths = brownian_motion(n_path, n_step, mean, variance)

for rdx in xrange(n_path):
 plt.plot(paths[rdx])

plt.title("Brownian motion (mean:{}, var:{}, n_path:{}, n_step:{})".format(
 mean, variance, n_path, n_step))

plt.show()

Brownian motion

標準布朗運動性質

  • B(t)N(0,t)B(t) \sim N(0, t).

  • {B(t),t 0}\{B(t), t\ \geq 0\} are a standard Brownian process,0<s<t,a,bR 0 < s < t, a,b \in \mathbb{R} .

  • Cov(B(s),B(t))=E(B(s),B(t))=s,st Cov(B(s), B(t))=E(B(s), B(t))=s,\forall s \leq t .

    Cov(B(s),B(t))=Cov(B(s),B(s)+B(t)B(s))=Cov(B(s),B(s))+Cov(B(s),B(t)B(s))[indep. incr.]=Cov(B(s),B(s))+0=s. \begin{array}{lcl} \because Cov(B(s), B(t)) & = & Cov(B(s), B(s)+B(t)-B(s)) \\ & = & Cov(B(s), B(s)) + Cov(B(s), B(t)-B(s)) [\text{indep. incr.}] \\ & = & Cov(B(s), B(s)) + 0 \\ & = & s. \end{array}

  • Var(B(s)B(t))=ts Var(B(s)-B(t))=t-s, Var(B(t))=tVar(B(t))=t.
  • Var(aB(s)+bB(t))=(a+b)2s+b2(ts) Var(aB(s)+bB(t))=(a+b)^2s + b^2(t-s).

    Var(aB(s)+bB(t))=Var(aB(s)+b(B(s)+B(t)B(s)))=Var((a+b)B(s)+b(B(t)B(s)))=Var((a+b)B(s))+Var(b(B(t)B(s))[indep. incr.]=(a+b)2s+b2(ts). \begin{array}{lcl} \because Var(aB(s)+bB(t)) & = & Var(aB(s)+b(B(s)+B(t)-B(s))) \\ & = & Var((a+b)B(s) + b(B(t)-B(s))) \\ & = & Var((a+b)B(s)) + Var(b(B(t)-B(s)) [\text{indep. incr.}] \\ & = & (a+b)^2s + b^2(t-s). \end{array}

  • aB(s)+bB(t) aB(s) + bB(t) \sim normal distribution.
  • Covariance matrix of (W(t1),W(t2),,W(tn))(W(t_1), W(t_2), \cdots, W(t_n)) is [E(W2(t1))E(W(t1)W(tn))E(W(tn)W(t1))E(W2(tn))] \begin{bmatrix} E(W^2(t_1)) & \cdots & E(W(t_1) W(t_n)) \\ \vdots & \ddots & \vdots \\ E(W(t_n) W(t_1)) & \cdots & E(W^2(t_n)) \end{bmatrix}

The density function

  • ft(x)=12πtex22tf_t(x) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}.

The joint pdf

f(x1,x2,,xn)=ft1(x1)ft2(x2x1)ftntn1(xnxn1)=1(2π)n/2[t1(t2t1)(tntn1)]1/2exp{12[x12t1+(x2x1)2t2t1++(xnxn1)2tntn1]} \begin{array}{rcl} f(x_1,x_2, \cdots, x_n) & = & f_{t_1}(x_1) f_{t_2}(x_2 - x_1) \cdots f_{t_n - t_{n-1}} (x_n - x_{n-1}) \\ & = & \frac{1}{(2\pi)^{n/2}[t_1 (t_2-t_1) \cdots (t_n - t_{n-1})]^{1/2}}\exp\lbrace {-\frac{1}{2}\left[ \frac{x_1^2}{t_1} + \frac{(x_2 - x_1)^2}{t_2 - t_1} + \cdots + \frac{(x_n - x_{n-1})^2}{t_n - t_{n-1}}\right] }\rbrace \end{array}

Conditional distribution

  • Given s<ts < t and B(t)=bB(t) = b.

    • fst(xb)=fs,t(B(s)=x,B(t)=b)ft(B(t)=b)=fs(x)fts(bx)ft(b)(indep. incr.)f_{s\vert t} (x \vert b) = \frac{f_{s,t}(B(s)=x, B(t)=b)}{f_t(B(t) = b)} = \frac{f_s(x) f_{t-s}(b-x)}{f_t(b)} (\because \text{indep. incr.}).

    • fs(x)=12πsex22s\because f_s(x) = \frac{1}{\sqrt{2\pi s}} e^{-\frac{x^2}{2s}}, ft(b)=12πteb22tf_t(b) = \frac{1}{\sqrt{2 \pi t}}e^{- \frac{b^2}{2t}}, and fts(bx)=12π(tse(bx)22(tsf_{t-s}(b-x) = \frac{1}{\sqrt{2\pi (t-s}}e^{-\frac{(b-x)^2}{2(t-s}}.

    • fst(xb)=12πs(ts)texp(xstb)22(st(ts))\therefore f_{s \vert t} (x \vert b) = \frac{1}{\sqrt{2 \pi \frac{s(t-s)}{t}}} \exp {-\frac{(x-\frac{s}{t}b)^2}{2(\frac{s}{t}(t-s))}}.
  • E(B(s)B(t)=b)=stbE(B(s) \vert B(t) = b) = \frac{s}{t}b.

  • Var(B(s)B(t)=b)=st(ts)Var(B(s) \vert B(t) = b) = \frac{s}{t} (t-s).

Covariance

  • X(t), t0X(t), \ t \geq 0 is Brownian process, X(t)N(0,σ2t)X(t) \sim N(0, \sigma^2 t).

  • 0<s<t 0 < s < t, Cov(X(s),X(t)=σ2sCov(X(s), X(t) = \sigma^2 s.

Cov(X(s),X(t))=E(X(s)X(t))=E(X(s)(X(s)+X(t)X(s)))=Var(X(s))+Cov(X(s),X(t)X(s))=Var(X(s))=σ2s. \begin{array}{rcl} Cov(X(s), X(t)) & = & E(X(s) X(t)) \\ & = & E(X(s)(X(s) + X(t) - X(s))) \\ & = & Var(X(s)) + Cov(X(s), X(t) - X(s)) \\ & = & Var(X(s)) \\ & = & \sigma^2 s. \end{array}

  • Generally, Cov(X(s),X(t))={σ2min(s,t)st>0,0st<0.Cov(X(s), X(t)) = \lbrace \begin{array}{cl} \sigma^2 \min(\vert s \vert, \vert t \vert) & st > 0, \\ 0 & st < 0. \end{array}

Correlation

  • Corr(X(s),X(t))=tsCorr(X(s), X(t)) = \sqrt{\frac{t}{s}}, 0<s<t0 < s < t.

Corr(X(s),X(t))=Cov(X(s),X(t))Var(X(s))Var(X(t))=σ2sσ2sσ2t=ts. \begin{array}{rcl} Corr(X(s), X(t)) & = & \frac{Cov(X(s), X(t))}{\sqrt{Var(X(s)) Var(X(t))}} \\ & = & \frac{\sigma^2 s}{\sqrt{\sigma^2 s \sigma^2 t}} \\ & = & \sqrt{\frac{t}{s}}. \end{array}

平賭(鞅)(Martingle process)

  • (Ω,F,Fn,P)(\Omega, F, F_n, P) be a probability space, and FnF_n is a flitration.

    • If X(t)FtX(t) \in F_t-measurable, E(X(t))<E(\vert X(t) \vert) < \infty, and
    • X(t)=E(X(t+1)Ft) X(t) = E(X(t+1) \vert F_t).
    • then XX is a martingale process.
  • X(t)X(t) is a Brownian process, X(t)N(0,σ2t)X(t) \sim N(0, \sigma^2 t), the following are martingale processes:

    • X(t)X(t)
    • X2(t)σ2tX^2(t) - \sigma^2 t
    • (Exponential martingale process) exp{μX(t)μ22σ2t}, μR\exp\lbrace \mu X(t) - \frac{\mu^2}{2} \sigma^2 t \rbrace,\ \mu \in \mathbb{R}.
  • X(t)X(t) is martingale process.

    • 0<s<t 0 < s < t , X(t)=X(t)X(s)+X(s)X(t) = X(t) - X(s) + X(s).

      E(X(t)F(s))=E(X(t)X(s)+X(s)F(s))=E(X(t)X(s)F(s))+E(X(s)F(s))(X(t)X(s) indep. to Fs)=E(X(t)X(s))+X(s)=X(s). \begin{array}{rcl} E(X(t) \vert F(s)) & = & E(X(t) - X(s) +X(s) \vert F(s)) \\ & = & E(X(t) - X(s) \vert F(s)) + E(X(s) \vert F(s)) \\ (\because X(t)-X(s) \text{ indep. to } F_s) & = & E(X(t) - X(s)) + X(s) \\ & = & X(s). \end{array}

  • X2(t)σ2tX^2(t) - \sigma^2 t is martingale process.

    X2(t)=(X(t)X(s)+X(s))2=(X(t)X(s))2+2X(s)(X(t)X(s))+X2(s) \begin{array}{rcl} X^2(t) & = & (X(t) - X(s) + X(s))^2 \\ & = & (X(t) - X(s))^2 + 2X(s)(X(t) - X(s)) + X^2(s) \end{array}

    • E((X(t)X(s))2Fs)=E((X(t)X(s))2)=(ts)σ2E((X(t) - X(s))^2 \vert F_s) = E((X(t) - X(s))^2) = (t-s)\sigma^2 .

    • E(X2(s)Fs)=X2(s)E(X^2(s) \vert F_s)=X^2(s).

    • E(X2(t)σ2tFs)=(ts)σ2+X2(s)σ2t=X2(s)σ2s\therefore E(X^2(t) - \sigma^2 t \vert F_s) = (t-s)\sigma^2 + X^2(s) - \sigma^2 t = X^2(s) - \sigma^2 s.

  • exp{μX(t)μ22σ2t}, μR\exp \lbrace \mu X(t) - \frac{\mu^2}{2} \sigma^2 t \rbrace,\ \mu \in \mathbb{R}. is martingale process.

    • μX(t)=μ(X(t)X(s))+μX(s)\mu X(t) = \mu (X(t) - X(s)) + \mu X(s).
    • E(exp(μX(t))Fs)=exp(μX(s))E(exp(μ(X(t)X(s)))) E(\exp(\mu X(t)) \vert F_s) = \exp(\mu X(s)) \cdot E(\exp(\mu (X(t) - X(s)))).
    •  X(t)X(s)N(0,(ts)σ2)\because \ X(t) - X(s) \sim N(0, (t-s)\sigma^2),

      • the mgf E(exp(μ(X(t)X(s)))=exp(μ22(ts)σ2)E(\exp(\mu (X(t)- X(s))) = \exp \left( \frac{\mu^2}{2} (t-s)\sigma^2 \right).

      E(exp(μX(t)μ22σ2t)Fs)=exp(μX(s)+μ22(ts)σ2μ22σ2t)=exp(μX(s)μ22σ2s). \begin{array}{rcl} \therefore E \left( \exp(\mu X(t) - \frac{\mu^2}{2} \sigma^2 t) \vert F_s \right) & = & \exp \left( \mu X(s) + \frac{\mu^2}{2} (t-s) \sigma^2 - \frac{\mu^2}{2} \sigma^2 t \right) \\ & = & \exp \left( \mu X(s) - \frac{\mu^2}{2} \sigma^2 s \right). \end{array}

Shift property

  • X(t), t0X(t),\ t \geq 0 is Brownian motion, X(t)N(0,σ2t)X(t) \sim N(0, \sigma^2 t).

  • \Rightarrow Y(t)=X(t+r)X(r), rRY(t) = X(t+r) - X(r), \ \forall r \in \mathbb{R} is Brownian process.
    • E(Y(t))=E(X(t+r)X(r))=E(X(t+r))E(X(r))=0E(Y(t)) = E(X(t+r) - X(r)) = E(X(t+r)) - E(X(r)) = 0.

    • Cov(Y(t),Y(s))=σ2min(t,s)Cov(Y(t), Y(s)) = \sigma^2 \min (t,s).

      Cov(X(t),X(s))=E(X(t)X(s))=E((X(t+r)X(r))(X(s+r)X(r))=E(X(t+r)X(s+r))E(X(t+r)X(r))E(X(r)X(s+r))+E(X2(r))=σ2min(t+r,s+r)σ2rσ2r+σ2=σ2min(t,s). \begin{array}{rcl} Cov(X(t), X(s)) & = & E(X(t) X(s)) \\ & = & E( (X(t+r)-X(r))(X(s+r) - X(r)) \\ & = & E(X(t+r)X(s+r)) - E(X(t+r)X(r)) - E(X(r)X(s+r)) + E(X^2(r)) \\ & = & \sigma^2 \min(t+r, s+r) - \sigma^2 r - \sigma^2 r + \sigma^2 \\ & = & \sigma^2 \min(t,s). \end{array}

    • Y(t)Y(t) is normal distribution.

Scaling property

  • X(t), t0X(t),\ t \geq 0 is Brownian motion, X(t)N(0,σ2t)X(t) \sim N(0, \sigma^2 t).

  • \Rightarrow Y(t)=X(c2t)c, c>0Y(t) = \frac{X(c^2 t)}{c}, \ \forall c > 0 is Brownian process.
    • E(Y(t))=0E(Y(t)) = 0.
    • Cov(Y(t),Y(s))=σ2min(t,s)Cov(Y(t), Y(s)) = \sigma^2 \min(t,s).

      Cov(X(t),X(s)=c2E(X(c2t)(c2s))=σ2c2min(c2t,c2s)=σ2min(t,s). \begin{array}{rcl} Cov(X(t), X(s) & = & c^{-2} E(X(c^2 t) (c^2 s)) \\ & = & \sigma^2 c^{-2} \min(c^2t, c^2 s) \\ & = & \sigma^2 \min (t,s). \end{array}

      • Y(t)Y(t) is normal distribution.

Brownian motion with drift

  • 前面討論的Brownian motion都是沒有趨勢,即E(X(t))=0, tE(X(t)) = 0,\ \forall t.

  • X(t), t0X(t), \ t \geq 0 is Brownian process with drift coefficient μ\mu and variance parameter σ2\sigma^2 if

    • X(0)=0X(0) = 0.
    • X(t), t0X(t), \ t \geq 0 has stationary and independent increments. * X(t)N(μt,σ2t)X(t) \sim N(\mu t, \sigma^2 t).
  • 等價定義, B(t), t0B(t),\ t \geq 0 is standard Brownian process and X(t)=σB(t)+μtX(t) = \sigma B(t) + \mu t.

Geometric Brownian proces

  • Y(t), t0Y(t),\ t \geq 0 is Brownian process, and Y(t)N(μt,σ2t)Y(t) \sim N(\mu t, \sigma^2 t).
  • Defintion: Geometric Brownian motion

    • X(t)=eY(t), t0X(t) = e^{Y(t)},\ t \geq 0.
    • i.e. lnX(t)=Y(t)N(μt,σ2t) \ln X(t) = Y(t) \sim N(\mu t, \sigma^2 t).
  • E(X(t)X(u),0us)=X(s)E(eY(t)Y(s))E(X(t) \vert X(u), 0 \leq u \leq s) = X(s)E(e^{Y(t)- Y(s)}).

    E(X(t)X(u),0us)=E(eY(t)X(u),0us)=E(eY(t)Y(s)+Y(s)X(u),0us)(indep. incr.)=eY(s)E(eY(t)Y(s)X(u),0us)=X(s)E(eY(t)Y(s)). \begin{array}{rcl} E(X(t) \vert X(u), 0 \leq u \leq s) & = & E(e^{Y(t)} \vert X(u), 0 \leq u \leq s) \\ & = & E(e^{Y(t) - Y(s) + Y(s)} \vert X(u), 0 \leq u \leq s) \\ (\because \text{indep. incr.}) & = & e^{Y(s)} E(e^{Y(t) - Y(s)} \vert X(u), 0 \leq u \leq s) \\ & = & X(s)E(e^{Y(t)- Y(s)}). \end{array}

Standard Brownian bridge process

  • Standard Brownian bridge process為起點與終點在相同位置的隨機過程。

  • B(t), t0B(t),\ t \geq 0 is standard Brownian process, B(t)N(0,t)B(t) \sim N(0, t).

  • Let Y(t)=B(t)tB(0)Y(t) = B(t) - t B(0), 0t1 0 \leq t \leq 1.

    • Y(0) = B(0) - 0 B(1) = 0.
    • Y(1) = b(1) - B(1) = 0‧
    • Standard Brownian bridge from Y(0)=0Y(0)=0 to Y(1)=0Y(1) = 0.

Standard Brownian bridge process properties

  • E(Y(t))=E(B(t)tB(0))=0E(Y(t)) = E(B(t) - tB(0)) = 0.
  • Cov(Y(t),Y(s))=s(1t)Cov(Y(t), Y(s)) = s(1-t), 0<s<t<1 0 < s < t < 1.

    Cov(Y(t),Y(s))=Cov(B(t)tB(1),B(s)sB(1))=Cov(B(t),B(s))sCov(B(1),B(t))tCov(B(s),B(1))+stCov(B(1),B(1))=sstst+st=s(1t). \begin{array}{rcl} Cov(Y(t), Y(s)) & = & Cov(B(t) - tB(1), B(s) - sB(1)) \\ & = & Cov(B(t), B(s)) - s Cov(B(1), B(t)) - t Cov(B(s), B(1)) + st Cov(B(1), B(1)) \\ & = & s - st - st + st \\ & = & s(1-t). \end{array}

Brownian bridge process

  • B(t), t0B(t),\ t \geq 0 is standard Brownian process, B(t)N(0,t)B(t) \sim N(0, t).

  • Process start from aa at time t=0t=0, achieve to bb at t=Tt = T.

* Y(t)=a(1tT)+btT+(B(t)tTB(t))Y(t) = a \left( 1-\frac{t}{T} \right) + b\frac{t}{T} + \left( B(t) - \frac{t}{T} B(t) \right), 0tT0 \leq t \leq T.

* {% math %}Y(0) = a{% endmath %}.
* {% math %}Y(T) = b{% endmath %}.
  • E(Y(t))=a(1tT)+btTE(Y(t)) = a \left( 1 - \frac{t}{T} \right) + b \frac{t}{T}.
  • Var(Y(t))=t(1tT)Var(Y(t)) = t \left( 1- \frac{t}{T} \right).

    Var(Y(t))=E(B(t)tTB(t))2=E2(B(t))2tTE(B(t)B(T))+t2T2E2(B(T))=y2t2T+t2T2T=t(1tT). \begin{array}{rcl} Var(Y(t)) & = & E\left( B(t) - \frac{t}{T} B(t)\right)^2 \\ & = & E^2(B(t)) - \frac{2t}{T} E(B(t) B(T)) + \frac{t^2}{T^2} E^2(B(T)) \\ & = & y - \frac{2t^2}{T} + \frac{t^2}{T^2} T\\ & = & t \left( 1 - \frac{t}{T} \right). \end{array}

First-order variation

  • 上圖中,依點t1t_1, t2t_2TT的函數變動量為FVT(f)=(f(t1)f(t0))+(f(t2)f(t1))+(f(T)f(t2))=0t1f(t)dt+t1t2f(t)dt+t2Tf(t)dt=0Tf(t)dtF_{V_T}(f) = (f(t_1) - f(t_0)) + (f(t_2) - f(t_1)) + (f(T) - f(t_2)) = \int_0^{t_1} f^{'}(t)dt + \int_{t_1}^{t_2} -f^{'}(t)dt + \int_{t_2}^T f^{'}(t)dt = \int_0^T \vert f^{'}(t) \vert dt.
  • Let partition π={t0,t1,,tN}\pi =\lbrace t_0, t_1,\cdots, t_N \rbrace of [0,T][0,T], and δ=max0kN(tk+1tk)\delta = \max_{0\leq k\leq N} (t_{k+1} - t_k).
  • Define FVT(f)=limδ0k=0N1f(tk+1)f(tk))F_{V_T}(f) = \lim_{\delta \rightarrow 0} \sum_{k=0}^{N-1}\begin{vmatrix} f(t_{k+1}) -f(t_k)) \end{vmatrix} .
  • By mean-value-theorem (MVT) of derivative
    • ktk[tk,tk+1]f(tk+1)f(tk))tk+1tk=f(1)(tk)\exists k \in t_k^{*} \in [t_k, t_{k+1}] \ni \frac{f(t_{k+1})-f_(t_k))}{t_{k+1}-t_k} = f^{(1)}(t_k^{*}).
    • f(tk+1f(tk))=f(1)(tk)(tk+1tk)\therefore f(t_{k+1} - f(t_k)) = f^{(1)}(t_k^{*}) (t_{k+1} - t_k) .
    • k=0N1f(tk+1)f(tk)=k=0N1f(1)(tk)(tk+1)tk)\sum_{k=0}^{N-1} f(t_{k+1}) - f(t_k) = \sum_{k=0}^{N-1} \begin{vmatrix} f^{(1)}(t_k^{*}) \end{vmatrix} (t_{k+1}) - t_k).
    • limδ0k=0N1f(tk+1)f(tk)=limδ0k=0N1f(1)t(k)(tk+1tk)=0Tf(1)(tk)dt\therefore \lim_{\delta \rightarrow 0} \sum_{k=0}^{N-1} \begin{vmatrix} f(t_{k+1}) - f(t_k)\end{vmatrix} = \lim_{\delta \rightarrow 0} \sum_{k=0}^{N-1} \begin{vmatrix} f^{(1)} t(_k^{*})\end{vmatrix} (t_{k+1} - t_k) = \int_0^T \begin{vmatrix} f^{(1)}(t_k^{*}) \end{vmatrix}dt.
    • FVT(f)=0Tf(1)(tk)dt\therefore F_{V_T}(f) = \int_0^T \begin{vmatrix} f^{(1)}(t_k^{*}) \end{vmatrix} dt. (QED)

Quadratic variation

  • The quadrativ variation of fucntion ff up to time TT is [f,f](T)=limδ0k=0N1(f(tk+1)f(tk))2 [f,f](T) = \lim_{\delta \rightarrow 0} \sum_{k=0}^{N-1} (f(t_{k+1}) - f(t_k))^2
  • Suppose fC1([0,T])f \in C^1([0,T]) (i.e. ff has a continuous 1st derivative)
  • k=0N1(f(tk+1)f(tk))2δk=0N1f(1)(tk)2(tk+1tk) \sum_{k=0}^{N-1} (f(t_{k+1}) - f(t_k))^2 \leq \delta \sum_{k=0}^{N-1} \begin{vmatrix} f^{(1)}(t_k^{*})^2 \end{vmatrix}(t_{k+1} - t_k). [f,f](T)limδ0k=0N1(f(tk+1)f(tk))2limδ0(δk=0N1f(1)(tk)2(tk+1tk))=limδ0δlimδ0k=0N1f(1)(tk)2(tk+1tk)=limδ0π0Tf(1)(t)2dt \begin{array}{rcl} [f,f](T) & \equiv & \lim_{\delta \rightarrow 0} \sum_{k=0}^{N-1} (f(t_{k+1}) - f(t_k))^2 \\ & \leq & \lim_{\delta \rightarrow 0} \left( \delta \sum_{k=0}^{N-1} \begin{vmatrix} f^{(1)}(t_k^{*})^2 \end{vmatrix}(t_{k+1} - t_k) \right) \\ & = & \lim_{\delta \rightarrow 0} \delta \lim_{\delta \rightarrow 0} \sum_{k=0}^{N-1} \begin{vmatrix} f^{(1)}(t_k^{*})^2 \end{vmatrix} (t_{k+1} - t_k) \\ & = & \lim_{\delta \rightarrow 0} \pi \int_0^T \begin{vmatrix} f^{(1)}(t)\end{vmatrix}^2 dt \end{array}

  • If limδ0π0Tf(1)(t)2dt\lim_{\delta \rightarrow 0} \pi \int_0^T \begin{vmatrix} f^{(1)}(t)\end{vmatrix}^2 dt \leq \infty then [f,f](T)=0[f,f](T) = 0.

  • If limδ0π0Tf(1)(t)2dt\lim_{\delta \rightarrow 0} \pi \int_0^T \begin{vmatrix} f^{(1)}(t)\end{vmatrix}^2 dt \rightarrow \infty, then [f,f](T)[f,f](T) diverges.

  • Brownian process is continuous, but not differentiabl everywhere, therefore the MVT is failed!!

results matching ""

    No results matching ""