凸集合(Convex set)

定義: x,yS\forall x, y \in S, θx+(1θ)yS, 0θ1 \theta x + (1-\theta) y \in S, \ 0 \leq \theta \leq 1 \Leftrightarrow SS is convex set.

線段 (Line segment)

  • Line segment between x1x_1 and x2x_2

    • x=θx1+(1θ)x2x = \theta x_1 + (1-\theta) x_2 with 0θ1 0 \leq \theta \leq 1.
    • 線段有限制長度, 必須在x1x_1x2x_2之間,所以0θ1 0 \leq \theta \leq 1

  • Convex set CC contains line segment between any two points in the set.
    • x1,x2C\forall x_1, x_2 \in C, 0θ10 \leq \theta \leq 1 \Rightarrow θx1+(1θ)x2C \theta x_1 + (1-\theta) x_2 \in C.
Convex set Non-convex set
Convex and non-convex set.

仿射集合(Affine set)

  • Line through x1,x2x_1, x_2.

    • x=θx1+(1θ)x2, θRx = \theta x_1 + (1-\theta) x_2, \ \forall \theta \in \mathbb{R}.
    • 直線沒有限制長度,所以θ\theta可為任意實數。

Line
Line.
  • Affine set: contains the line through any two distinct points in the set.

    • E.g. solution set of linear equation {xAx=b}\lbrace x \vert Ax = b \rbrace.
    • 反過來說,Affine set可寫做線性方程式的解答集合。

凸組合與凸包(Convex combination and convex hull)

  • convex combination of x1,x2,,xNx_1, x_2, \cdots, x_N

    • x=θ1x1+θ2x2++θNxNx = \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_N x_N with
    • θ1+θ2++θN=1 \theta_1 + \theta_2 + \cdots + \theta_N = 1, θn0\forall \theta_n \geq 0.
  • convex hull convSconv S: set of all convex combinations of points in SS.

Convex hull Convex hull
Convex hull.

凸錐組合與凸錐(conic combination and convex cone)

  • conic combination of x1x_1 and x2x_2.
    • x=θ1x1+θ2x2x = \theta_1 x_1 + \theta_2 x_2 with θ10\theta_1 \geq 0 and θ20\theta_2 \geq 0.
  • convex cone: set that contains all conic combinations of points in the set.
Convex cone
Convex cone.

超平面與半空間(hyperplanes and halfspaces)

  • Hyperplane
    • {xaTx=b, a0}\lbrace \mathbf{x} \vert \mathbf{a}^T \mathbf{x}=\mathbf{b},\ \mathbf{a} \neq 0 \rbrace.
Hyperplane
Hyperplane.
  • Halfspace
    • {xaTxb,a0}\lbrace \mathbf{x} \vert \mathbf{a}^T \mathbf{x} \leq \mathbf{b}, \mathbf{a} \neq \mathbf{0} \rbrace.
Halfspace
Halfplane.
  • aa is the normal vector.

球與橢圓(Ball and ellipsoids)

  • (Euclidean) ball with center xcx_c and radius r>0r > 0:

    • B(xc,r)={xxxc2r}={xc+ruu1}\begin{array}{rcl} B(x_c, r) & = & \lbrace x \vert \begin{Vmatrix} x - x_c \end{Vmatrix}_2 \leq r \rbrace \\ & = & \lbrace x_c + ru \vert \begin{Vmatrix} u \end{Vmatrix} \leq 1 \rbrace \end{array}
  • Ellipsoid: set of the form

    • {x(xxc)P1(xxc)1}={xc+Auu1}\lbrace x \vert (x-x_c) P^{-1} (x-x_c) \leq 1 \rbrace = \lbrace x_c + Au \vert \begin{Vmatrix} u \end{Vmatrix} \leq 1 \rbrace.
    • PS++nP \in S_{++}^n (PP is symmetric positive definite).
    • AA square and nonsingular.
Ellipsoid
Ellipsoid。Ball為Ellipsoid的特例。

範數球與錐(norm ball and cone)

  • for a general norm: \begin{Vmatrix} \cdot \end{Vmatrix}.

  • norm ball with center xcx_c and radius r>0r > 0

    • {xxxcr}\lbrace x \vert \begin{Vmatrix} x - x_c \end{Vmatrix} \leq r \rbrace.
  • norm cone

    • {(x,t)xt}\lbrace (x,t) \vert \begin{Vmatrix} x \end{Vmatrix} \leq t \rbrace.
  • Euclidean norm cone常稱為second-order cone.

Norm cone
Norm cone為雙變數的集合。

多面體(Polyhedra)

  • Solution set of finitely many linear inequalities and equalities.
    • AxbA x \preceq b, and Cx=dCx = d.
    • ARm×nA \in \mathbb{R}^{m \times n}, CRp×nC \in \mathbb{R}^{p \times n}
    • 常見於線性規劃的限制式。
polyhedra
多面體是有限個Halfspace與Hyperplane的交集。

正半定錐(Positive semidefinite cone)

  • Sn\mathbf{S}^n is set of symmetric n×n n \times n matrices.
  • S+n={XSn0X}\mathbf{S}_{+}^n = \lbrace \mathbf{X} \in \mathbf{S}^n \vert 0 \preceq \mathbf{X} \rbrace : positive semidefinite n×n n \times n matrices.
    • S+n\mathbf{S}_{+}^n is a convex cone.
  • S++n={XSn0X}\mathbf{S}_{++}^n = \lbrace \mathbf{X} \in \mathbf{S}^n \vert 0 \prec \mathbf{X} \rbrace : positive definite n×n n \times n matrices.
Semidefinite cone
Semidefinite cone。

保留凸性的運算

交集(Intersection)

  • 任意數量個的凸集合之交集仍為凸集合。
Intersection of convex sets.
Intersection of convex sets.

仿射函數(Affine function)

  • Suppose f:RnRm f: \mathbf{R}^n \rightarrow \mathbf{R}^m is affine function.

    • E.g. f(x)=Ax+bf(x) = Ax +b with ARm×nA \in \mathbb{R}^{m \times n}, bRmb \in \mathbb{R}^m.

    • 旋轉 (rotation)、縮放(scaling)、投影(projection)都是仿射運算。

  • The image of a convex set under ff is convex.

    • SRnS \subseteq \mathbb{R}^n is convex \Rightarrow f(S)={f(x)xS}f(S) = \lbrace f(x) \vert x \in S \rbrace is convex.
  • The pre-image f1(C)f^{-1}(C) of a convex set under ff is convex.

    • CRmC \subseteq \mathbb{R}^m is convex \Rightarrow f1(C)={xRnf(x)C}f^{-1}(C) = \lbrace x \in \mathbb{R}^n \vert f(x) \in C \rbrace is convex.

透視函數(Perspective function)

  • f:Rn+1Rnf: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}.

    • f(x,t)=xtf(x,t) = \frac{x}{t}.
    • domf={(x,t)t>0} dom f = \lbrace (x,t) \vert t > 0 \rbrace.
  • Images and pre-images of convex sets under perspective function are still convex.

線性分數函數(Linear-fractional function)

  • f:RnRm f: \mathbb{R}^n \rightarrow \mathbb{R}^m.
    • f=Ax+bcTx+df = \frac{Ax + b}{c^T x + d}.
    • domf={xcTx+d>0}dom f = \lbrace x \vert c^T x + d > 0 \rbrace .
  • Images and pre-images of convex sets under linear-fractional functions are still convex.

  • E.g. f(x)=xx1+x2+1 f(x) = \frac{x}{x_1 + x_2 +1}.

  • 原始Data envelopment analysis(DEA)的目標函數為線性分數函數,分母為輸入加權值,分子為輸出加權值,而目標函數是要找出給定特徵下,何種輸入、輸出權重可使效率最大化。
Linear fractional function.
Linear fractional function.

results matching ""

    No results matching ""