布朗運動積分(Brownian process integral)
- {X(t), t≥0} is Brownian process, X(t)∼N(0,σ2t).
- Z(t)=∫0tX(s)ds. is called integraded Brownian process (被積分函數為布朗運動,而積分算子為直線)。
- Note: Brownian process處處連續,但是均不可微分,以下僅具符號意義,而非真正的微分
- dtdZ(t)=X(t)⇔Z(t)=Z(0)+∫0tX(s)ds.
- Z(t)為不同實現值之sample path X(s)從0至t的總和,因為X(s)為一隨機分佈,因此Z(t)也為隨機分佈,而非定值。
Properties
期望值(Expectation)
- X(t) is a Brownian process ⇒ X(t) is a Gaussian process.
- Z(t) is sum of X(s) ⇒ Z(t) is a Gaussian process.
- Expectation E(Z(t))=0.
∵Z(t)Let δ∴E(Z(t))======∫abX(s)dsn→∞limnb−ak=1∑nX(a+nb−ak).1≤k≤nmax(tk−tk−1), tk−1≤dk≤tk,t0=a,t0≤t1≤⋯≤tn=b,δ→0lim(k=1∑nE(X(di))(tk−tk−1))∫abE(X(s))ds0.
共變異數(Covariance)
- 0≤s≤t, Cov(Z(s),Z(t))=σ22s2(t−3s).
- If t=s, Var(Z(t))=3σ2s3=E2(Z(t))=E2(∫0tX(s)ds).
- If t=1, ∫01X(s)ds∼N(0,3σ2).
Cov(Z(s),Z(t)(∵E(⋅) is linear op.)======E(Z(s)Z(t))E(∫0sX(u)du∫0tX(v)dv)E(∫0s∫0tX(u)X(v)dudv)∫0s∫0tE(X(u)X(v))dudv∫0s∫0tCov(X(u),X(v))dudv∫0s∫0tσ2min(u,v)dudv.
- If u<v, ∫0tmin(u,v)dudv=∫0vudu.
- If u>v, ∫0tmin(u,v)dudv=∫0tvdu.
∴Cov(Z(s),Z(t))======∫0s∫0tσ2min(u,v)dudvσ2∫0s(∫0vudu+∫0tvdu)dvσ2∫0s(2u2∣0v+vu∣vt)dvσ2∫0s(2v2+vt−v2)dvσ2∫0s(vt−2v2)dvσ22s2(t−3s).
Brownian process as integrated function
- {X(t), t≥0} is Brownian process, X(t)∼N(0,σ2t).
- f(t) continuous on [a,b], and g(t) continuous on [c,d].
- F(t)=∫abf(s)X(s)ds, and G(t)=∫cdg(s)X(s)ds.
Properties
期望值(Expectation)
- E(F(t))=E(∫abf(s)X(s)ds)=∫abf(s)E(X(s))ds=0.
- E(G(t))=E(∫cdg(s)X(s)ds)=∫cdg(s)E(X(s))ds=0.
- 上述期望值算子可進積分符號內的原因是期望值為線性線子,且E(f(s))=f(s).
共變異數(Covariance)