布朗運動積分(Brownian process integral)
{ X ( t ) , t ≥ 0 } \lbrace X(t),\ t \geq 0 \rbrace { X ( t ) , t ≥ 0 } is Brownian process, X ( t ) ∼ N ( 0 , σ 2 t ) X(t) \sim N(0, \sigma^2 t) X ( t ) ∼ N ( 0 , σ 2 t ) .
Z ( t ) = ∫ 0 t X ( s ) d s Z(t)= \int_0^t X(s) ds Z ( t ) = ∫ 0 t X ( s ) d s . is called integraded Brownian process (被積分函數為布朗運動,而積分算子為直線)。
Note: Brownian process處處連續,但是均不可微分,以下僅具符號意義,而非真正的微分
d Z ( t ) d t = X ( t ) ⇔ Z ( t ) = Z ( 0 ) + ∫ 0 t X ( s ) d s \frac{d Z(t)}{d t} = X(t) \Leftrightarrow Z(t) = Z(0)+ \int_0^t X(s) ds d t d Z ( t ) = X ( t ) ⇔ Z ( t ) = Z ( 0 ) + ∫ 0 t X ( s ) d s .
Z ( t ) Z(t) Z ( t ) 為不同實現值之sample path X ( s ) X(s) X ( s ) 從0 0 0 至t t t 的總和,因為X ( s ) X(s) X ( s ) 為一隨機分佈,因此Z ( t ) Z(t) Z ( t ) 也為隨機分佈,而非定值。
Properties
期望值(Expectation)
X ( t ) X(t) X ( t ) is a Brownian process ⇒ \Rightarrow ⇒ X ( t ) X(t) X ( t ) is a Gaussian process.
Z ( t ) Z(t) Z ( t ) is sum of X ( s ) X(s) X ( s ) ⇒ \Rightarrow ⇒ Z ( t ) Z(t) Z ( t ) is a Gaussian process.
Expectation E ( Z ( t ) ) = 0 E(Z(t)) = 0 E ( Z ( t ) ) = 0 .
∵ Z ( t ) = ∫ a b X ( s ) d s = lim n → ∞ b − a n ∑ k = 1 n X ( a + b − a n k ) . L e t δ = max 1 ≤ k ≤ n ( t k − t k − 1 ) , t k − 1 ≤ d k ≤ t k , t 0 = a , t 0 ≤ t 1 ≤ ⋯ ≤ t n = b , ∴ E ( Z ( t ) ) = lim δ → 0 ( ∑ k = 1 n E ( X ( d i ) ) ( t k − t k − 1 ) ) = ∫ a b E ( X ( s ) ) d s = 0 .
\begin{array}{rcl}
\because Z(t) & = & \int_a^b X(s) ds \\
& = & \lim_{n \rightarrow \infty} \frac{b-a}{n} \sum_{k=1}^n X\left( a + \frac{b-a}{n}k \right). \\
\text{Let } \delta & = & \max_{1 \leq k \leq n}(t_k - t_{k-1}),\ t_{k-1} \leq d_k \leq t_k, \\
& & t_0 = a, t_0 \leq t_1 \leq \cdots \leq t_n = b, \\
\therefore E(Z(t)) & = & \lim_{\delta \rightarrow 0} \left( \sum_{k=1}^n E(X(d_i)) (t_k - t_{k-1}) \right) \\
& = & \int_a^b E(X(s))ds \\
& = & 0.
\end{array}
∵ Z ( t ) Let δ ∴ E ( Z ( t ) ) = = = = = = ∫ a b X ( s ) d s n → ∞ lim n b − a k = 1 ∑ n X ( a + n b − a k ) . 1 ≤ k ≤ n max ( t k − t k − 1 ) , t k − 1 ≤ d k ≤ t k , t 0 = a , t 0 ≤ t 1 ≤ ⋯ ≤ t n = b , δ → 0 lim ( k = 1 ∑ n E ( X ( d i ) ) ( t k − t k − 1 ) ) ∫ a b E ( X ( s ) ) d s 0 .
共變異數(Covariance)
0 ≤ s ≤ t 0 \leq s \leq t 0 ≤ s ≤ t , C o v ( Z ( s ) , Z ( t ) ) = σ 2 s 2 2 ( t − s 3 ) Cov(Z(s), Z(t)) = \sigma^2 \frac{s^2}{2} \left( t - \frac{s}{3}\right) C o v ( Z ( s ) , Z ( t ) ) = σ 2 2 s 2 ( t − 3 s ) .
If t = s t = s t = s , V a r ( Z ( t ) ) = σ 2 s 3 3 = E 2 ( Z ( t ) ) = E 2 ( ∫ 0 t X ( s ) d s ) Var(Z(t)) = \frac{\sigma^2 s^3}{3} = E^2(Z(t)) = E^2 \left(\int_0^t X(s) ds \right) V a r ( Z ( t ) ) = 3 σ 2 s 3 = E 2 ( Z ( t ) ) = E 2 ( ∫ 0 t X ( s ) d s ) .
If t = 1 t=1 t = 1 , ∫ 0 1 X ( s ) d s ∼ N ( 0 , σ 2 3 ) \int_0^1X(s)ds \sim N \left(0, \frac{\sigma^2}{3} \right) ∫ 0 1 X ( s ) d s ∼ N ( 0 , 3 σ 2 ) .
C o v ( Z ( s ) , Z ( t ) = E ( Z ( s ) Z ( t ) ) = E ( ∫ 0 s X ( u ) d u ∫ 0 t X ( v ) d v ) = E ( ∫ 0 s ∫ 0 t X ( u ) X ( v ) d u d v ) ( ∵ E ( ⋅ ) i s l i n e a r o p . ) = ∫ 0 s ∫ 0 t E ( X ( u ) X ( v ) ) d u d v = ∫ 0 s ∫ 0 t C o v ( X ( u ) , X ( v ) ) d u d v = ∫ 0 s ∫ 0 t σ 2 min ( u , v ) d u d v .
\begin{array}{rcl}
Cov(Z(s), Z(t) & = & E(Z(s) Z(t)) \\
& = & E \left( \int_0^s X(u)du \int_0^t X(v)dv \right) \\
& = & E \left( \int_0^s \int_0^t X(u)X(v) du dv \right) \\
(\because E(\cdot) \text{ is linear op.}) & = & \int_0^s \int_0^t E(X(u)X(v))dudv \\
& = & \int_0^s \int_0^t Cov(X(u), X(v)) dudv \\
& = & \int_0^s \int_0^t \sigma^2 \min(u,v) dudv.
\end{array}
C o v ( Z ( s ) , Z ( t ) ( ∵ E ( ⋅ ) is linear op. ) = = = = = = E ( Z ( s ) Z ( t ) ) E ( ∫ 0 s X ( u ) d u ∫ 0 t X ( v ) d v ) E ( ∫ 0 s ∫ 0 t X ( u ) X ( v ) d u d v ) ∫ 0 s ∫ 0 t E ( X ( u ) X ( v ) ) d u d v ∫ 0 s ∫ 0 t C o v ( X ( u ) , X ( v ) ) d u d v ∫ 0 s ∫ 0 t σ 2 min ( u , v ) d u d v .
If u < v u < v u < v , ∫ 0 t min ( u , v ) d u d v = ∫ 0 v u d u \int_0^t \min(u,v)dudv = \int_0^v u du ∫ 0 t min ( u , v ) d u d v = ∫ 0 v u d u .
If u > v u > v u > v , ∫ 0 t min ( u , v ) d u d v = ∫ 0 t v d u \int_0^t \min(u,v)dudv = \int_0^t v du ∫ 0 t min ( u , v ) d u d v = ∫ 0 t v d u .
∴ C o v ( Z ( s ) , Z ( t ) ) = ∫ 0 s ∫ 0 t σ 2 min ( u , v ) d u d v = σ 2 ∫ 0 s ( ∫ 0 v u d u + ∫ 0 t v d u ) d v = σ 2 ∫ 0 s ( u 2 2 ∣ 0 v + v u ∣ v t ) d v = σ 2 ∫ 0 s ( v 2 2 + v t − v 2 ) d v = σ 2 ∫ 0 s ( v t − v 2 2 ) d v = σ 2 s 2 2 ( t − s 3 ) .
\begin{array}{rcl}
\therefore Cov(Z(s), Z(t)) & = & \int_0^s \int_0^t \sigma^2 \min(u,v) dudv \\
& = & \sigma^2 \int_0^s \left( \int_0^v u du + \int_0^t v du \right)dv \\
& = & \sigma^2 \int_0^s \left( \frac{u^2}{2} \vert_0^v+ vu\vert_v^t \right)dv \\
& = & \sigma^2 \int_0^s \left(\frac{v^2}{2} + vt - v^2 \right)dv \\
& = & \sigma^2 \int_0^s \left(vt - \frac{v^2}{2} \right)dv \\
& = & \sigma^2 \frac{s^2}{2} \left(t - \frac{s}{3} \right).
\end{array}
∴ C o v ( Z ( s ) , Z ( t ) ) = = = = = = ∫ 0 s ∫ 0 t σ 2 min ( u , v ) d u d v σ 2 ∫ 0 s ( ∫ 0 v u d u + ∫ 0 t v d u ) d v σ 2 ∫ 0 s ( 2 u 2 ∣ 0 v + v u ∣ v t ) d v σ 2 ∫ 0 s ( 2 v 2 + v t − v 2 ) d v σ 2 ∫ 0 s ( v t − 2 v 2 ) d v σ 2 2 s 2 ( t − 3 s ) .
Brownian process as integrated function
{ X ( t ) , t ≥ 0 } \lbrace X(t),\ t \geq 0 \rbrace { X ( t ) , t ≥ 0 } is Brownian process, X ( t ) ∼ N ( 0 , σ 2 t ) X(t) \sim N(0, \sigma^2 t) X ( t ) ∼ N ( 0 , σ 2 t ) .
f ( t ) f(t) f ( t ) continuous on [ a , b ] [a,b] [ a , b ] , and g ( t ) g(t) g ( t ) continuous on [ c , d ] [c,d] [ c , d ] .
F ( t ) = ∫ a b f ( s ) X ( s ) d s F(t) = \int_a^b f(s)X(s)ds F ( t ) = ∫ a b f ( s ) X ( s ) d s , and G ( t ) = ∫ c d g ( s ) X ( s ) d s G(t) = \int_c^d g(s) X(s)ds G ( t ) = ∫ c d g ( s ) X ( s ) d s .
Properties
期望值(Expectation)
E ( F ( t ) ) = E ( ∫ a b f ( s ) X ( s ) d s ) = ∫ a b f ( s ) E ( X ( s ) ) d s = 0 E\left( F(t) \right) = E\left( \int_a^b f(s)X(s) ds \right) = \int_a^b f(s)E(X(s))ds = 0 E ( F ( t ) ) = E ( ∫ a b f ( s ) X ( s ) d s ) = ∫ a b f ( s ) E ( X ( s ) ) d s = 0 .
E ( G ( t ) ) = E ( ∫ c d g ( s ) X ( s ) d s ) = ∫ c d g ( s ) E ( X ( s ) ) d s = 0 E(G(t)) = E\left( \int_c^d g(s)X(s) ds \right) = \int_c^d g(s)E(X(s))ds = 0 E ( G ( t ) ) = E ( ∫ c d g ( s ) X ( s ) d s ) = ∫ c d g ( s ) E ( X ( s ) ) d s = 0 .
上述期望值算子可進積分符號內的原因是期望值為線性線子,且E ( f ( s ) ) = f ( s ) E(f(s)) = f(s) E ( f ( s ) ) = f ( s ) .
共變異數(Covariance)