布朗運動積分(Brownian process integral)

  • {X(t), t0}\lbrace X(t),\ t \geq 0 \rbrace is Brownian process, X(t)N(0,σ2t)X(t) \sim N(0, \sigma^2 t).
  • Z(t)=0tX(s)ds Z(t)= \int_0^t X(s) ds . is called integraded Brownian process (被積分函數為布朗運動,而積分算子為直線)。
  • Note: Brownian process處處連續,但是均不可微分,以下僅具符號意義,而非真正的微分
    • dZ(t)dt=X(t)Z(t)=Z(0)+0tX(s)ds\frac{d Z(t)}{d t} = X(t) \Leftrightarrow Z(t) = Z(0)+ \int_0^t X(s) ds.
    • Z(t)Z(t)為不同實現值之sample path X(s)X(s)00tt的總和,因為X(s)X(s)為一隨機分佈,因此Z(t)Z(t)也為隨機分佈,而非定值。

Properties

期望值(Expectation)

  • X(t)X(t) is a Brownian process \Rightarrow X(t)X(t) is a Gaussian process.
  • Z(t)Z(t) is sum of X(s)X(s) \Rightarrow Z(t)Z(t) is a Gaussian process.
  • Expectation E(Z(t))=0E(Z(t)) = 0.

Z(t)=abX(s)ds=limnbank=1nX(a+bank).Let δ=max1kn(tktk1), tk1dktk,t0=a,t0t1tn=b,E(Z(t))=limδ0(k=1nE(X(di))(tktk1))=abE(X(s))ds=0. \begin{array}{rcl} \because Z(t) & = & \int_a^b X(s) ds \\ & = & \lim_{n \rightarrow \infty} \frac{b-a}{n} \sum_{k=1}^n X\left( a + \frac{b-a}{n}k \right). \\ \text{Let } \delta & = & \max_{1 \leq k \leq n}(t_k - t_{k-1}),\ t_{k-1} \leq d_k \leq t_k, \\ & & t_0 = a, t_0 \leq t_1 \leq \cdots \leq t_n = b, \\ \therefore E(Z(t)) & = & \lim_{\delta \rightarrow 0} \left( \sum_{k=1}^n E(X(d_i)) (t_k - t_{k-1}) \right) \\ & = & \int_a^b E(X(s))ds \\ & = & 0. \end{array}

共變異數(Covariance)

  • 0st0 \leq s \leq t, Cov(Z(s),Z(t))=σ2s22(ts3)Cov(Z(s), Z(t)) = \sigma^2 \frac{s^2}{2} \left( t - \frac{s}{3}\right).
  • If t=st = s, Var(Z(t))=σ2s33=E2(Z(t))=E2(0tX(s)ds)Var(Z(t)) = \frac{\sigma^2 s^3}{3} = E^2(Z(t)) = E^2 \left(\int_0^t X(s) ds \right).
  • If t=1t=1, 01X(s)dsN(0,σ23)\int_0^1X(s)ds \sim N \left(0, \frac{\sigma^2}{3} \right).

Cov(Z(s),Z(t)=E(Z(s)Z(t))=E(0sX(u)du0tX(v)dv)=E(0s0tX(u)X(v)dudv)(E() is linear op.)=0s0tE(X(u)X(v))dudv=0s0tCov(X(u),X(v))dudv=0s0tσ2min(u,v)dudv. \begin{array}{rcl} Cov(Z(s), Z(t) & = & E(Z(s) Z(t)) \\ & = & E \left( \int_0^s X(u)du \int_0^t X(v)dv \right) \\ & = & E \left( \int_0^s \int_0^t X(u)X(v) du dv \right) \\ (\because E(\cdot) \text{ is linear op.}) & = & \int_0^s \int_0^t E(X(u)X(v))dudv \\ & = & \int_0^s \int_0^t Cov(X(u), X(v)) dudv \\ & = & \int_0^s \int_0^t \sigma^2 \min(u,v) dudv. \end{array}

  • If u<vu < v, 0tmin(u,v)dudv=0vudu\int_0^t \min(u,v)dudv = \int_0^v u du .
  • If u>v u > v, 0tmin(u,v)dudv=0tvdu\int_0^t \min(u,v)dudv = \int_0^t v du.

Cov(Z(s),Z(t))=0s0tσ2min(u,v)dudv=σ20s(0vudu+0tvdu)dv=σ20s(u220v+vuvt)dv=σ20s(v22+vtv2)dv=σ20s(vtv22)dv=σ2s22(ts3). \begin{array}{rcl} \therefore Cov(Z(s), Z(t)) & = & \int_0^s \int_0^t \sigma^2 \min(u,v) dudv \\ & = & \sigma^2 \int_0^s \left( \int_0^v u du + \int_0^t v du \right)dv \\ & = & \sigma^2 \int_0^s \left( \frac{u^2}{2} \vert_0^v+ vu\vert_v^t \right)dv \\ & = & \sigma^2 \int_0^s \left(\frac{v^2}{2} + vt - v^2 \right)dv \\ & = & \sigma^2 \int_0^s \left(vt - \frac{v^2}{2} \right)dv \\ & = & \sigma^2 \frac{s^2}{2} \left(t - \frac{s}{3} \right). \end{array}

Brownian process as integrated function

  • {X(t), t0}\lbrace X(t),\ t \geq 0 \rbrace is Brownian process, X(t)N(0,σ2t)X(t) \sim N(0, \sigma^2 t).
  • f(t)f(t) continuous on [a,b][a,b], and g(t)g(t) continuous on [c,d][c,d].
  • F(t)=abf(s)X(s)dsF(t) = \int_a^b f(s)X(s)ds, and G(t)=cdg(s)X(s)dsG(t) = \int_c^d g(s) X(s)ds.

Properties

期望值(Expectation)

  • E(F(t))=E(abf(s)X(s)ds)=abf(s)E(X(s))ds=0E\left( F(t) \right) = E\left( \int_a^b f(s)X(s) ds \right) = \int_a^b f(s)E(X(s))ds = 0.
  • E(G(t))=E(cdg(s)X(s)ds)=cdg(s)E(X(s))ds=0E(G(t)) = E\left( \int_c^d g(s)X(s) ds \right) = \int_c^d g(s)E(X(s))ds = 0.
  • 上述期望值算子可進積分符號內的原因是期望值為線性線子,且E(f(s))=f(s)E(f(s)) = f(s).

共變異數(Covariance)

results matching ""

    No results matching ""